$f-Linear\ Algebra$ f ${f 01qcc}$

nag_real_qr (f01qcc)

1. Purpose

nag_real_qr (f01qcc) finds the QR factorization of the real m by n matrix A, where $m \geq n$.

2. Specification

3. Description

The m by n matrix A is factorized as

$$A = Q \begin{pmatrix} R \\ 0 \end{pmatrix} \quad \text{when } m > n,$$

$$A = QR \qquad \quad \text{when } m = n,$$

where Q is an m by m orthogonal matrix and R is an n by n upper triangular matrix. The factorization is obtained by Householder's method. The kth transformation matrix, Q_k , which is used to introduce zeros into the kth column of A is given in the form

$$Q_k = \begin{pmatrix} I & 0 \\ 0 & T_k \end{pmatrix}$$

where

$$T_k = I - u_k u_k^T,$$

$$u_k = \begin{pmatrix} \zeta_k \\ z_k \end{pmatrix},$$

 ζ_k is a scalar and z_k is an (m-k) element vector. ζ_k and z_k are chosen to annihilate the elements below the triangular part of A.

The vector u_k is returned in the (k-1)th element of the array **zeta** and in the (k-1)th column of **a**, such that ζ_k is in $\mathbf{zeta}[k-1]$ and the elements of z_k are in $\mathbf{a}[k][k-1], \ldots, \mathbf{a}[m-1][k-1]$. The elements of R are returned in the upper triangular part of **a**. Q is given by

$$Q = (Q_n Q_{n-1} \dots Q_1)^T.$$

Good background descriptions to the QR factorization are given in Dongarra $et\ al(1979)$ and Golub and Van Loan (1989).

4. Parameters

m

Input: m, the number of rows of A. Constraint: $\mathbf{m} \geq \mathbf{n}$.

 \mathbf{n}

Input: n, the number of columns of A. When $\mathbf{n} = 0$ then an immediate return is effected. Constraint: $\mathbf{n} \geq 0$.

a[m][tda]

Input: the leading m by n part of the array \mathbf{a} must contain the matrix to be factorized. Output: the n by n upper triangular part of \mathbf{a} will contain the upper triangular matrix R and the m by n strictly lower triangular part of \mathbf{a} will contain details of the factorization as described in Section 3.

[NP3275/5/pdf] 3.f01qcc.1

tda

Input: the second dimension of the array \mathbf{a} as declared in the function from which nag_real_qr is called.

Constraint: $tda \ge n$.

zeta[n]

Output: **zeta** [k-1] contains the scalar ζ_k for the kth transformation. If $T_k = I$ then $\mathbf{zeta}(k-1) = 0.0$, otherwise $\mathbf{zeta}[k-1]$ contains ζ_k as described in Section 3 and ζ_k is always in the range $(1.0, \sqrt{2.0})$.

fail

The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

NE_2_INT_ARG_LT

On entry, $\mathbf{m} = \langle value \rangle$ while $\mathbf{n} = \langle value \rangle$. These parameters must satisfy $\mathbf{m} \geq \mathbf{n}$. On entry, $\mathbf{tda} = \langle value \rangle$ while $\mathbf{n} = \langle value \rangle$. These parameters must satisfy $\mathbf{tda} \geq \mathbf{n}$.

NE_INT_ARG_LT

On entry, **n** must not be less than 0: $\mathbf{n} = \langle value \rangle$.

6. Further Comments

The approximate number of floating-point operations is given by $2n^2(3m-n)/3$.

6.1. Accuracy

The computed factors Q and R satisfy the relation

$$Q\begin{pmatrix}R\\0\end{pmatrix} = A + E$$

where $||E|| \le c\epsilon ||A||$, and ϵ is the **machine precision**, c is a modest function of m and n and ||.|| denotes the spectral (two) norm.

6.2. References

Dongarra J J, Moler C B, Bunch J R and Stewart G W (1979) LINPACK Users' Guide SIAM, Philadelphia.

Golub G H and Van Loan C F (1989) *Matrix Computations* (2nd Edn) Johns Hopkins University Press, Baltimore.

Wilkinson J H (1965) The Algebraic Eigenvalue Problem Clarendon Press, Oxford.

7. See Also

nag_real_apply_q (f01qdc) nag_real_form_q (f01qec)

8. Example

To obtain the QR factorization of the 5 by 3 matrix

$$A = \begin{pmatrix} 2.0 & 2.5 & 2.5 \\ 2.0 & 2.5 & 2.5 \\ 1.6 & -0.4 & 2.8 \\ 2.0 & -0.5 & 0.5 \\ 1.2 & -0.3 & -2.9 \end{pmatrix}.$$

3.f01qcc.2

 $f-Linear\ Algebra$ f $\mathbf{01qcc}$

8.1. Program Text

```
/* nag_real_qr(f01qcc) Example Program
      * Copyright 1990 Numerical Algorithms Group.
      * Mark 1, 1990.
      */
     #include <nag.h>
     #include <stdio.h>
     #include <nag_stdlib.h>
     #include <nagf01.h>
     #define MMAX 20
     #define NMAX 10
     main()
     {
       Integer tda = NMAX;
       double zeta[NMAX], a[MMAX][NMAX];
       Integer i, j, m, n;
       Vprintf("f01qcc Example Program Results\n");
       Vscanf(" %*[^\n]"); /* skip headings in data file */
Vscanf(" %*[^\n]");
       Vscanf("%ld%ld", &m, &n);
       if (m > MMAX | | n > NMAX)
            Vprintf("m or n is out of range.\n");
            V_{printf("m = \%2ld, n = \%2ld\n", m, n)}
         }
       else
         {
            Vscanf(" %*[^\n]"); /* skip next heading */
           for (i = 0; i < m; ++i)
                                        /* Read matrix A */
              for (j = 0; j < n; ++j)
                Vscanf("%lf", &a[i][j]);
            /* Find the QR factorization of A */
           f01qcc(m, n, (double *)a, tda, zeta, NAGERR_DEFAULT);
           \label{lem:printf("QR factorization of A\n\n");} \\
            Vprintf("Vector zeta\n");
           for (i = 0; i < n; ++i)
    Vprintf(" %8.4f", zeta[i]);</pre>
           Vprintf("\n\n");
            Vprintf("Matrix A after factorization (upper triangular part is R)\n");
            for (i = 0; i < m; ++i)
                for (j = 0; j < n; ++j)
    Vprintf(" %8.4f", a[i][j]);</pre>
                Vprintf("\n");
       exit(EXIT_SUCCESS);
8.2. Program Data
     f01qcc Example Program Data
     Values of m and n.
       5
             3
     Matrix A
             2.5
       2.0
                    2.5
            2.5
       2.0
                    2.5
       1.6 -0.4
                   2.8
       2.0 -0.5
                   0.5
       1.2 -0.3 -2.9
```

[NP3275/5/pdf] 3.f01qcc.3

8.3. Program Results

3.f01qcc.4 [NP3275/5/pdf]